
952 L. G. Glikman and E. hi. Iakushev 

Here K(x) is an arbitrary function; k. a and b are constants. 

The solution of Eq. (1) under conditions (7) is obtained in p] by the Liapunov-Charpy 

method @I. 
By virtue of the Jacobi theorem 133, the resulting total integral (1) can be used to find 

the solution of the associated canonical system of differential equations, This system 

yields the differential Eq. ar - 
dt2 --2$ -- 

Thus, the latter equation can be solved for a function F satisfying condition (6). 
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Henri Poincard [l] noted that closed trajectories (cycles) investigated,in the whole,play 

a role roughly analogous to that of singular points in the study of the behavior of trajec- 

tories in the small. 
However, the problem of finding the cycles is in itself quite difficult, Among the cri- 

teria of existence of periodic trajectories for two-dimensional systems we must first of 

all note the criteria based on a consideration of vector field rotation (the indices of the 

Poincare/ singular points), 
A sufficient criterion for the existence of periodic trajectories on a plane based on the 

so-called ring principle whereby the velocity vector on the boundary of the domain is 
everywhere directed into or out of the ring was pointed out by Bendixon [2 and 31. 

There exist still other methods of investigation in the whole, among them the method 
of Liapunov functions [4]. 

The criterion of existence of periodic trajectories for conservative systems in the so- 
called invertible case, which is based on a consideration of the variation of the action 
integral, was set forth by Whittaker [S], Our study of cycles for conservative systems is 
based on a different principle, and specifically on the study of quasi-indices as structural 
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characteristics of singular points Is& 

1. Let a mechnical system with two degrees of freedom move in a conservative field 

with the potential v(& , 40) , and let its Hamiltonian X<pi ,qi ) be of the form 

H (Pi, Q4)=‘/8 (P?+ Pr') + v (W Qd 

In the invertible case of the Hamilton equation which we are considering 

admit of the energy integral X(p, . & ) = h. We shall assume that the potential &pi ) 

has isolated singular points 0, d= 1,. . . , k) at which the function &&)becomes infi- 

nite. 
In many important cases, e. g. for fields formed by attracting (repelling) centers, the 

singular points 0, are simply poles of differing multiplicitie’s. 
Let us investigate the necessary conditions for the existence (nonexistence) of closed 

Qajectories (cycles) for mechanical system (1.1) under consideration. To do this we 

write out the differential equation of the trajectories of system (1. l), making use of the 

principle of steady action in Jacobi form. 
In the Cartesian system (ql =x, ga = I/) the equation of trajectories is fl] 

+?%d,- a0 
aY 

7&Y _ (a = In V2 (h - v (2, Y) jj (1.2) 

Here Y (x, I/) = arc tgg’ is the angle formed by the velocity vector U and the positive 

Xaxis ; h is the constant energy ; the mass of the representing point M of the system is 
assumed to be equal to unity (m = 1). 

Thus, our initial problem of finding the conditions of existence of ‘the cycles of system 
(1.1) reduces to finding the conditions of existence of the corresponding solutions of the 
differential equation of the trajectories (1.2). 

2, An important role in the qualitative theory of conservative system trajectories is 

played by the Pfaffian form 
+?!$dz--ddy (2.1) 

where 4(x, y) is derived in acCordan& with (1.2) and where the variables dx and dl/ 
can be chosen arbitrarily and need not satisfy Hamilton system (1.1). Let us rewrite the 

form W (2.1) differently. Since in moving along a certain contour (0) we have 
dz = cos (ny) ds, dy = - cos (nz) ds, where n is the direction of the interior normal to 

the contour (c) and ds is an arc element, it follows that 

o - @I’ / an) ds (2.2) 

In the case where the contour (c) is a whole cycle, so that c&X and dy satisfy Hamil- 
ton system (1.1). by virtue of (1.2) and (2.1) we have W = d$ . so that 

1 
-z 

gds= 1 

(0 

(2.3) 

Let the point 0, which we take as the origin be an isolated singular point or’ the po- 
tential I/(X, g) and therefore of the HamiRonian fl . 

Let us consider the curvilinear integral of the differential form W (2.1) taken along 

some closed (non-self-intersecting) contour ( yj) surrounding the singular point 0, . 
The limiting value of this integral divided by 2rT , when the contour (yJ) is contracted 

to zero without intersecting the singular poikrt 0, , will be called the quasi-index JJ of 
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the singular point 0, 
Jj =&-lim 

(8 

o (r = vzz + y" ) 
(.i.lll 

'A Cyj) 

The quasi-index for a regular point is always zero. This follows directly from (2,~) 

and (2.4) if we note that a@/&~ is a bounded function in the neighborhood of a regular 
point. Depending on the structure of the singular points 0, , the quasi-indices JJ can 
assume arbitrary real values. This distinguishes them from Poincare indices, which can 
assume integer values only. 

Theorem 1. The quasi-index Jj depends neither on the choice of the curve ( yJ ) 
nor on the method of taking the limit, provided that deformation of the contour (yj ) 

does not make it intersect the singular point 0, . 
In order to prove this theorem, let us construct the two arbitrary closed (non-self-inter- 

secting) contours (c) and ( yj ) around the point 0, . Let the contour ( yj ) lie inside 
(c) . The curvilinear integral of the differential form W (2.1) taken over the complex 

contour (r ) (C) + ( yj ) in such a way that the domain ( 0.) bounded by this contour 
remains on the left can be transformed into an integral over the area of (Q*) with the 

aid of Green’s theorem. 

Then, taking the limit of contracting the contour (yj) to a point, by virtue of (2.4) 
we obtain 

“E&f) O) t &-$\AQdXd?/ )’ ! ..T) 

id, 
Here (U) is the domain bounded by the contour (c) and a is a Laplacian 

Since the selection of a different ( yj ) around the singular point 0, and the taking of 
the limit as r-1 0 does not alter the right-hand side of (‘2.5), this proves that the quasi- 
index JJ does not depend either on the choice of the contour ( yj) or on the method of 
taking the limit. In fact, it depends only on the structure of the singular point 0, itself. 

The theorem has been proved. 

Henceforth as our curves ( YJ ) surrounding the singular points OJ we shall choose cir- 
cles of small radius r with their centers at the points 0, . 

We note that the double integral in the right-hand side of (2.5) is singular, so that 
the quasi-index JJ has a finite value only if this integral exists. 

In the presence of cycles we can establish a simple relationship between the Poincak 

index 1, and the quasi-index JJ . In fact, let (c) be a cycle. Then, by virtue of (1.2) 

and (2.5) we obtain (‘1.6) 

The P&care/ index for a cycle is equal to unity (IJ = 1). This leads to the following 
fundamental relation : Jj -= 1 + & 

1s 
A@ dx dy (2.7) 

(0) 

Relation (2. ‘7) can be readily generalized for the case where the cycle (c) surrounds 
k singular points 0, (j'= I, A,..., k) . 

Surrounding the singular points 0, with the circles ( yJ ) of small radius r and anal- 
yzing the contour (I’) = (C) + (n) + . . . _1 (yk) as above for the case of one singular 
point. we obtain 

n@dxdy (J= i Jj) (2.8) 

j=l 

Here J is the sum of quasi-index Jj of the singular points 0, lying inside the cycle 
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(c) ; (U) is the domain bounded by the contour (c) minus the singular points OJ . 
In the case where the differential form UJ (P. 1) is a total differential 183 so that the 

condition A@(x, j.,‘) = 0 is fulfilled and where cycles are present, by virtue of (‘2.6) the 

quasi-index JJ coincides with the value of Poincard index 4 (i e 4 = Ij = 1). 
We note that by virtue of (2.1) and (2.4) the quasi-index JJ can be written in com- 

plex form 
(61= .!!$-ig) (2.9) 

Let n(z) be an analytic function of the complex variable z =X t $.ZJ, so that 

A@(x. y) = 0 by virtue of the Cauchy-Riemann conditions. 

If the singular point z = zj is a pole of multiplicity n , then the Loran series expansion 

is of the form 
62(z)=~T...+“~+aofalz+o.ra+ a** 

so that, by virtue of (2.9), the quasi-index JJ = - Re(a_1). 

3. The quasi-indices of singular points are quite simple for the important class of 
fields with potentials of the form I/= v( 7) . 

Let the point O( r = 0) which we take as our origin, be a singular point of the poten- 

tial V(r) . 
Then, by virtue of (5. ‘2) and (2.4). the quasi-index J of the point 0 is 

(3.1) 

Hence, the quasi-index J has a finite value different from zero only if the expansion 
of @(r ) in the neighborhood of zero is of the form 

Q (r) - a, In r + a,r + a,++ -+ . . . (a0 f 0) 

so that, by virtue of (3.1). the quasi-index J= - a, . For example, for the potential 

V (r) = AIre1 + Aar-2 + . . . + A,r4 

by virtue of (l..i?l we obtain 

@(r)=-Lln f hr”--_AAkm_‘.)\ =-+lnr+P(r) 
( ( I 

where F(r) is an entire function of r . In this case a, = -n/z and the quasi-index 
J= n/s . We can point out a case where the quasi-index J does not have a finite value. 

This is true, in fact, when the point o( ?” = 0) is essentially singular and when the expan- 

sion of v( 7) in the neighborhood of zero is of the form 

V (r) = AIre + A,+ + . . . 

This is the form, for example, of the potential of a ring [9] and of the potential of a 
spheroid for points lying in the equatorial plane [lo]. In these cases we have 

J = lim (ll+) = 00 (n + =) 

For a logarithmic potential V=A In r , the quasi-index Jof the singular point 7 = 0 
is equal to zero. Hence, in the neighborhood of zero we have the expansion 

0 (r) = 1/a In (2 (h - A In r)) = l/, In In l/ r + F (r) 

where F(r) is an entire function Hence, 

J=- VP lim (r In In r / r) = 0 (r -, 0) 



4. Considering motion on a projective plane, we introduce the notion of the quasi- 

index J’ of an infinitely distant point. Let the point O(r= 0) which we take as our ori- 
gin be a singular point. Let us surround the point 0 with some closed (non-self-intersect- 
ing) contour (y ) . The limiting value of the integral 

J* = J_. lim 
2n r-)cJ 4 

w (,*=-%j (4.1) 

(7) 
will be called the quasi-index of an infinitely distant point. Here n is the direction of 
the exterior normal to the contour (y ). We move along the contour (y ) in such a way 

that the domain ( 0,) containing the infinitely distant point remains on the left (i.e. 

clockwise around the point 0). 
Specifically, for a central field with the potential I/= V( 7) , on surrounding the point 

o( r= 0) with a circle (y ) of radius r, we obtain 

J+ = lirn (r .$$ 
1 

(r-+00) 
\ 

(4.2) 

Thus, for example, for a field with the potential Y= -A/F (A , n> 0) for a constant 
energy h = 0 the quasi-index J’ of an infinitely distant point is 

We recall that the quasi-index of the singular point O(r = 0) in this case was J=n/d. 
We note that the same results (and in particular Formula (4.2)) can be obtained by 

setting r = l/p and converting the potential V= -A /rn into V, = -A pn. In this case 
the infinitely distant point and the singular point O(r= 0) change places. 

6. The function 6 (x, y) = (1/2n)n@ (I, y) will be called the density of the distribu- 
tion @ (I, y). By virtue of (1.2) this function can be written as 

6 (r, y) --= - (h - V) nv + w,a + y/9 
4n (h - V)* 

while for central fields, where v = v(r) , 

(5.1) 

(5.2) 

The line at which the density 6(x, I/) changes sign will be called the zero density 
line. The equation of this line is 

F (z, Y, h) = (h - V) aV + (V,z t v,a) = 0 (5.3) 

It can turn out that a zero density line does not exist for the given potential v(x, g) 
and for certain values of the parameter h. In this case the density 6 will be a function 
which does not change its sign over the domain (a). 

The density 6(x , p) will also be of constant sign wherever the condition A0 0 is 
fulfilled, and it will be sign ( 6) = - 1 for any value of the constant energy h . 

It can also happen that the line of zero density is closed (it can even be self-intersect- 
ing) or it breaks down into n closed branches (0,). . . . , (&) . In the latter case the 
density 6 (X, p) will not change its sign inside each of the curves (& ) . This follows 
from the continuity of the density 6(x. z/) on passage through the zero density line. 

For example, let us consider the zero density line in the problem of two stationary 
centers, assuming that the attracting masses are equal and that the law of attraction is 
arbitrary. 

Assuming that the attracting centers lie at the points O1 (~a = ‘/,a, y1 = 0) and 
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0, (2s - - ‘/,a, ys = 0) , we wr+te out the potential I/ of the field in question 

VZ- ( $+$i) (A, n > 0, r1,2 = V(x f J/Z)% + YP) 

where, by virtue of (5.1). the density 6(x, g) is given by 

Hence, zero density lines do not exist for hyperbolic-parabolic types of motion (hk 0). 

In the case of elliptic motion (he 0) the zero density line does exist, and its equation 
is of the form rlnt2 + ro”+a = B (B=-ha/h) (5.4) 

In the case of Newtonian attraction (n = 1) we obtain 7,” + 7: = B . 
Simple analysis shows that this implies fulfillment of the inequality 

rrrs < Cs (C -(B/2)9 

so that the line of zero density lies inside the Cassinian oval rlra = 0’. 

6. The conditions of existence (absence) of cycles can be formulated in terms of the 

weights P (a) ~of the function @ (2, 9) , 

P = ss 8(x, y)dx dy &= 

(Cl) 

(6-f) 
. , 

where (0) is the domain bounded by the contour (q and 6(x, y) is, as before, the den- 

sity of the distributiorr@(X, g) . Basic relation (2.8) here becomes 

I-J=-P (J - J1 -i- Jp + . . . -t Jk) 03.2) 

The following theorems are valid. 

Theorem 2. Let the sum of quasi-indices Jj of the singular points 0, in the 

domain ( U) under consideration assumes one of the following values : 

a) --m<J<i, b) J=ii c) i<J<w (6.3) 

Then, the sufficient condition for the absence of cycles within (U) is, that the line of 
zero density (or any part of it) does not exist in (U) and that the weights P of the func- 

tion @ (z, v) obey the corresponding relations 

a) p Z 0, b) PfQ, 9 P<Q (6.4) 

This theorem can also be formulated in terms of the densities 6(x, I/) (see Is]) . 
Theorem 3. Let one of the conditions (6.3) be fulfilled in the domain ( U) under 

consideration. Then, if no line of zero density (ca any part of it) exists in this domain. 
then the condition that the weight P assumes the corresponding sign given by 

a) P<O, b) P = 0, cl P>O (6.5) 

is necessary but not sufficient for the existence of cycles. 

Theorem 4. Let the density 6(x, y) be equal to zero everywhere in the domain 
(Cl) except for the singular points. Then, if:no combination of values of the quasi-indices 

Jj of the singular points 0, lying in (U) is equal to unity, this is a sufficient condition 
for the absence of cycles in the domain ( 0) . 

We note that the equality to zero of the density 6 =(&)A@ in some domain corre- 
sponds to the condition of the total differential of the Pfafiian form W (2.1). 

Theorem 5. Let the density 6(x, I/) changes its sign in the closed domain ( U ) 
which is a circle of radius R with its center at the isolated singular point 0( r= 0) (i. e. 
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let a zero density line exist). 
Then, if the weight P is equal to zero for any circle of radius 7 %? with its center at 

the point 0 which lies entirely in the domain (a), and if the quasi-index Jo of the sin- 

gular point o( r= 0) is not equal to unity, then this is a sufficient condition for the absence 

of cycles in the domain ( Q) . 
The above Theorems can be proved by considering basic relation (6.2). 

7, As we know [ll], periodic motions for conservative systems do not exist in isolation, 
i.e. if there exists a periodic motion for some value of the constant energy h , then peri- 

odic motion ah0 exists for a constant & close to b. 
Let us investigate the existence of several cycles in the neighborhood of an isolated 

singular point for the same value of the constant energy h, . 
Let two .cycles (6”) and (c’) exist and form a ring 

(Fig. 1) for a given potential I/(X, 9) and for some value 

of h. 
The curvilinear integral of the Pfaffian form (2.1) taken 

over the complex contour (r) = (c) t (c’) can be trans- 
formed by means of Green’s theorem into an area integral 

$&II- + o m=-\\&Dd,cdy 

CC’) iU, 

Since (c) and (c’) are cycles by hypothesis, bv virtue 
Fig. 1 of (2.2) and (2.3) we obtain p : I__ 

3n 
A@ds m: 0 (7.1) 

(0) 
i.e. the equality to zero of the weight (P ) of the function @ over the area of the ring 

( Q) is a necessary condition for the existence of the cycles (c ) and (0 ‘) . 
Thus, we have the following theorem. 

Theorem 6. The sufficient condition for the absence of two cycles, one within the 

other at the given value of h is. that the density 6(x, ,Zj) does not change its sign. 

8. Let us consider the conditions of existence of circular cycles in a central force 

field with the potential I/ q V(r) . 
Writing out the differential equation of the trajectories in polar coordinates [12], 

and setting the derivatives of r with respect to U equal to zero, after dividing through 
by a nonzero factor ra we obtain the following condition on the contour of the circular 

cycle (C): Y (r) = 2h (Y (r) = rW / ar + 2V) (8.2) 

Condition (8.8) can be derived directly by means of the d’Alambert principle. This 

is easy to see when the derivation is carried out using the energy integral. 
The values rJ for the cycles (0;) corresponding to the given value of the constant 

energy h are the roots of the equation U(r) = ‘2h. It can turn out that several cycles 

are associated with the same value of the constant h . As an example let us consider 
the superposition of the potentials of two attracting centers 

v(r) = -$ + 5 (‘4, B<O, n>,l) (8.3) 

In this case we have 
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Y(r) = 
=1 (S - u) + B (2 - n) 

.* 
(8.4) 

Analysis of the curves Y= u( 7) (Fig. 2) for various n shows that for a given vaIue of 

the constant energy h two cycles can exist only for P <n < 3 . For a given n from the 

interval ;? <n < 3 the values hl = 9 and ha = jr( ra) are bifurcational. 

there exists one cycle with the radius r = ra . 

u (n-2) 
Y (rz) = (n _ l)rz” (8.5) 

We note that the necessary condition for the exist- 

Fig. P 
ence of two cycles (7.1) is completely fulfilled in 
in this case. 

9. Let us consider the behavior of the trajectories of a conservative system in the 

neighborhood of a quiescent point, and, specifically, on the generation of cycles by the 

equilibrium state. 
The coordinates of the quiescent point 0 (z~, y&can be found from the steady-state 

condition for the potential a~ (Z, Y) _ o 
----Z-- ’ 

av (2. Y) = i) 
8Y 

(9.1) 

Without limiting generality we can assume that v(X, , go) = 0 for the equilibrium 

position Xo = go = 0 . 
The expansion of I/(X, p) in the neighborhood of zero is of the form 

V=V,(x, Y)+V,+l(G Y)+ .** (n>2) (9.2) 

where V,(x, y) is a homogeneous form in the variables X and y of degree k . 
In order to find the quasi-index J of the quiescent point we make use of (&4),(& 1) , 

and also of the value of @(X, y) in accordance with (1.2). This yields 

-VVUdx+V,dy 
2 (h - V) (9.3) 

where ( y ) is a circle of small radius r with its center at the quiescent point, while the 
constant energy h must be taken equal to zero. This followsfrom the energy interval, 

since by hypothesis 6 = v( 0, 0) = 0 . 
On the contour (y ) we have X= r cos a, Y=r sina, dx=-yda, du=xda so that by 

virtue of Euler’s theorem on homogeneous functions we obtain 

-VVUdx+V,dy=(yVu+xV,)da=(nV,+(n+I)V,+l+~~~)d~ 

In polar coordinates , V,(r. a) = r”ak (a), where u,,. (a) is a homogeneous Mgono- 

metric form of degree k . Hence, by virtue of the familiar theorem on taking a-limit 
in the integrand, we obtain sn 

.J = & p-7 
B 

(no,, (a) i- r (n + i) c,+r (a) f.. .) da n 

-2((an(a)+ra,+,(a)+.00) =-2 (9.4) 
0” 

where n is the degree of the lowest-degree form v, in expansion (9.2) of I/(X, g) . 
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Limiting ourselves from now on to the lowest-degree form Vam = 2) in expansion (9.2) 

of V ( V, determines the sign of I/(x, I/) for small values of x and y) , we obtain the 

following expansion in the neighborhood of zero: 

JJ (2. Y) = + (A~ + 2Bzy + Cyr) (9.5) 

(Q-6) 

From Expression (5.1) for the density 6 we find that 

sign 6 = - sign p, P=+--V)Av+ Y;+v;, 
Evaluating the above derivatives and setting h = 0 , we obtain 

p = l/s (ay’ f 2bq/+ ~2’) (9.7) 

a = C* -AC+2Ba, b -= B (A -Ji C), c=A”-Ac+2B= (9.8) 

The discriminant of the resulting form I_I (9.7) is 

A - bs - a~ = (AC - B~)((A - c)a f 4~‘) (9.9) 

Let us prove the following theorems. 

Theorem 7. Let the potential energy V (9.5) in the equilibrium position have 

an isolated minimum, i. e. let the condition of the Lagrange theorem be fulfilled so that 

the system is in Liapunov-stable equilibrium. 
The necessary conditions for the existence of cycles are then fulfilled in the neighbor- 

hood of this point, and cycles can, in fact, exist. 
Proof. Since the discriminant of quadratic form (9.5) is negative (Ba - AC < 0, 

A,. C > 0), while Al’ = (A + C) > 0 and h - V > 0 by virtue of the energy integ- 

ral, the density 6(;, I/ ) (5.1) will be negative (sign 6= - 1). so that the weight P < 0 . 
Converting to the polar coordinates (r , a) and setting h > 0 (for h< 0 motion is not 

possible in the domain V(X, E/) > 0). we can compute the value of the quasi-index J 
(9.3) of the quiescent point. We have 

2z 

1 
J = 2n hi r= 

(A cc& a + 2B sin a cos a + C sina a) da 
2(h-1/sr*(Acosaa+2Bsinacosa +Csinsa))=’ 

0 

Since J = 0 , P < 0 in the stable equilibrium position, it follows by Theorem 3 that 

the necessary conditions for the existence of cycles are fulfilled. 
Theorem 8. Let the potential energy I/(X. p) (9.5) in the equilibrium position 

have an isolated maximum and let the equilibrium position be unstable by Liapunov’s 
inversion theorem 1131. Then cycles cannot exist in the neighborhood of the equilibrium 
position for the same constant energy h= 0 . 

Proof. Let V, = V( 0. 0) = 0, and therefore h = 0, in the unstable equilibrium position. 

Considering the motion for the constant energy h = 0, we can find the quasi-index Jo 
(9.4) of the quiescent point o( r = 0). 

Settfngn=2,weobtainJo=-1. 

Since the dfscriminant of quadratic form (9.5) B’- A c < 0 (A , cc 0) , it follows that 
the discriminant A = b’ - ac of the quadratic form I_I (9.7) is positive by virtue of (9.9). 

Hence, the form p will change its sign and this, in turn, implies that the density 6(X,1/) 
will behave in the same manner, since sign 6 = - signp . 

Converting to the polar coordinates (7 ,U ) and setting the constant energy h = 0, we 
can show that the weight P of the function @ is equal to zero over the area of the circle 



Cycle and quri-indica of singuiar poina of canservative systems 961 

( U) of arbitrary radius r. 
To do this we need merely prove that the integral 

2n 

K= 
s 

((; sins a + 26 sin u cos df c co@ a) da 
(A co@ a + 2B sin a cos a + C sins a) 

0 
vanishes, Introducine the complex variable r = eior, we obtain 

K=M $ (4 df M = const, zr s = -(AfC)Xt 2v-X=@ 
(r - %)a (7 - %)a A- C-2iB 

where integration is carried out over the unit circle (y ) , and 

* (7) = (c - a - 2ib) 7s 9 2 (a + c)r _t ( c - a + 2 ib) 

Omitting the intervening computations, we note that I T,T, I = 1, 1%~ 1 < 1, Res (z,)= 0. 

so that by virtue of the Cauchy residue theorem we find that K = 2rti M Res (zs) = 0, 

This proves the statement that P = 0 . 
Thus, the conditions of Theorem 5 are fulfilled in this case (P = 0 for any r > 0, and 

Jo = - 1) , so that the sufficient conditions for the absence of cycles are’ fulfilled. The 
theorem has been proved. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
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